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Matrices 
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1. Introduction. Several authors ([5], [6], [7], [8, pp. 188-195], [9, pp. 112-118], 
[10], and [11]) have described a method for inverting a matrix M, in which M is 
partitioned, certain smaller submatrices are inverted, and these inverses are com- 
bined by the Frobenius-Schur relation [8, p. 189]. Though the results of E. Bodewig 
in [7] do not justify his assertion that this is the most efficient general way of in- 
verting matrices (see [12, pp. 125-130]) the method is valuable if the smaller sub- 
matrices can be easily inverted. 

In this paper two graphs are associated with a matrix M, and used to permute 
the rows and columns of M until it or its transpose are in the form of Figure 1. 
On matrices of this form the above inversion method is very effective. 

A quite different graph theoretical approach has been described by F. Harary 
[1]. There the matrix M to be inverted is permuted into block triangular form but 
under the very severe restriction that the same permutation is applied to the rows 
and the columns. 

This paper was written while the author held a N.A.T.O. Research Fellowship 
at the University of Oslo. It incorporates several improvements suggested by the 
referee, to whom the above reference to [12] is also due. 

2. Single Bordered Block Diagonal Forms. 
Definition. A partitioned n X n matrix M is said to be in singly bordered block 

diagonal form (b.b.d.f.) if either it or its transpose M' are of the form shown in 
Figure 1. 

THEOREM. Suppose that an n X n matrix M is in b.b.d.f. Then M is nonsingular 
if and only if D1 ... Din, F are square nonsingular matrices. 

Proof. This follows immediately from the Frobenius-Schur relation and the 
fact that a matrix in block diagonal form is nonsingular if and only if each submatrix 
on the diagonal is nonsingular and hence square. 

3. The Graphs Associated with a Matrix. The column graph G of a matrix M 
is given by interchanging "row" and "column" throughout the following definition 
of the row graph GR of M. The vertices of GR shall be the rows of M, and the edges 
of GR are given by: 

there is an edge joining two vertices if and only if they are distinct and 
there is a column of M with nonzero entries in the two rows corresponding 
to the vertices. 

Clearly the row and column graphs of a matrix M are invariant under any permuta- 
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FIGURE 1 

tion of the rows and columns of M. This is only true for the directed graphs asso- 
ciated with a matrix in ([1], [2], [3]) if the same permutation is applied to both the 
rows and columns. 

By a component of an undirected graph G we mean a maximal connected sub- 
graph of G. Each vertex vi of G lies in just one component; if this component be- 
comes disconnected when vi and all edges involving vi are removed, then vi is said 
to be a point of attachment of G. More generally, if removing a set S of vertices of 
G and the edges involving them leaves G disconnected, then S is said to be an 
attachment set. In particular, if there are any points of attachment in a graph G, 
they form an attachment set A, and the components of the graph G*, remaining 
when A and the edges involving A are deleted from G, are called the subcomponents 
of G. 

Now suppose that S is an attachment set in the row graph of a matrix M. Let 
R ... *Rm be the subsets of the set of rows of M that correspond to them components 
of the row graph once S and the attendant edges have been deleted. Then each 
column of M has nonzero entries in rows from at most one R, so one can order the 
rows and columns of M in such a way that: 

(1) A row in Ri comes before any row that corresponds to a suppressed vertex 
of the row graph; 

(2) A column with a nonzero entry in a row of some Ri comes before any column 
whose only nonzero entries are in rows that correspond to suppressed vertices of 
the row graph; and for i < j; 

(3) A row in Ri comes before any row in Ry; 
(4) A column with a nonzero entry in a row of Ri comes before any column with 

a nonzero entry in a row of R, . 
This ordering puts M in b.b.d.f. but the submatrix F may not be square. If 

there is a diagonal submatrix Di with more rows than columns, the matrix M has 
no inverse; if there is a Di with more columns than rows, it is absorbed into F 
(i.e., the rows of Di are added to those corresponding to S and the ordering rede- 
fined). Thus we may suppose that F, D1 ... Dn are square, and use the Frobenius- 
Schur relation to determine the inverse of M. 

Dually, the choice of an attachment set in the column graph also allows one to 
permute M into b.b.d.f. and thereby find its inverse. 

Example. Suppose M is the following matrix: 

0 2 0 6 0 
0 0 7 4 6 
0 1 0 2 0 
0 0 6 -1 5 
1 0 0 3 0 
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The column graph of this is: 
V2 
I 

V1 -V4 V3 

V5 

Noting that V4 is an attachment vertex, we permute M to: 

1 0 0 0 3 

0 7 6 0 -4 
0 6 5 0 -1 
O O 0 2 6 
O 0 0 1 2 

This matrix is easily inverted, and appropriate permutation then gives M'1. 

4. The Choosing of an Attachment Set. When inverting a matrix by hand, 
one often has several attachment sets available. Factors influencing the choice 
between them, are (1) the graph would split into as many components as possible, 
(2) the attachment set should be small--otherwise many of the D's are lost in 
making F square-and (3) the diagonal submatrices are of roughly the same size. 

When working on a computer, the algorithm in [4] is used to determine the 
points of attachment and subcomponents of the row and column graphs of the 
matrix M. The only choice is as to which of the two graphs should be ignored. 

In either case one should use both the row and the column graph of M since they 
may be of quite different degrees of complexity. Furthermore, one should consider 
the possibility of using the methods of this paper iteratively so that the diagonal 
submatrices D1, X , D,,, F are also put in their most easily invertible form. 
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